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Mechanisms of generation and maintenance of cell po-
larity have been investigated using various organisms
and cell lines. During and after the establishment of
cell polarity, polarized (vesicular) transport as well as
cell—cell adhesion is essential. Here, I introduce each
molecular step of polarized transport and the molecules
involved there. Usually, epithelial cells and neurons are
two well-known examples of polarized cells. Thus, I
next describe the similarity and difference in polarized
transport between these two cell types. Though closely
connected, the relationship between cell—cell adhesion
and polarized transport remain poorly understood.
I will take a few examples indicating the relationship
between them. Finally, I will present the future direc-
tions in this field.
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Abbreviations: GFP, green fluorescent protein;

LPH, lactase-phlorizin hydrolase; MDCK cell,
Madin-Darby canine kidney cell; TGN, trans-Golgi
network; VSV-G protein, vesicular stomatitis virus G
protein; SNARE, SNAP (Soluble NSF Attachment
Protein) Receptors.

Mechanisms of generation and maintenance of cell po-
larity have been investigated mainly using various cell
lines, particularly Madin—Darby canine kidney
(MDCK) cells (1, 2). To date, though the relationship
between cell—cell adhesion and cell polarity has been
clarified, the relationship between polarized transport
[i.e. transport from the trans-Golgi network (TGN) to
the apical/basolateral plasma membranes] and cell po-
larity has been elusive. Moreover, a question of
whether polarized transport starts after cell—cell con-
tact is established or polarized transport itself is essen-
tial for establishment of cell—cell contact is under
debate. In addition, the knowledge of molecules
involved in polarized transport in vivo is still lacking
and the search for new molecules is now under
investigation.

By use of green fluorescent protein (GFP) technol-
ogy, we are now able to look at the intracellular trans-
port in living cells. So, I will first describe the live
process of polarized transport and then describe each
step.

The Route of Intracellular Vesicular Traffic
(Polarized and Non-polarized Transport)

Kai Simons’ group has described the transport of
apical and basolateral transport vesicles and found
out the following basic behaviors of vesicles (3).
First, in polarized cells as well as in non-polarized
cells sorting takes place at the TGN. Secondly, apical
and basolateral vesicles are separately transported to
their final destinations and fused with apical and baso-
lateral plasma membranes, respectively. Thirdly,
basolateral-destined vesicles are not transported
through endosomes.

However, Mellman’s group showed that vesicles,
which transported VSV-G (vesicular stomatitis virus
G) protein, a basolateral protein, pinched out from
the TGN, and went through the recycling endosomes
to the plasma membranes (4). Nowadays, a number of
groups come around to that opinion.

In addition, it is known that: (i) apical-destined ves-
icles carrying raft-dependent cargos and those carrying
raft-independent cargos are distinct; and that (ii)
basolateral-destined vesicles are divided into several
groups according to their cargos.

Steps in polarized transport and the pro-
teins known to be involved in each step

Molecules involved in each step are depicted in Fig. 1.

Sorting

It is known that the sorting between apical and baso-
lateral transport is carried out basically at the TGN.
The sorted vesicles are transported by distinct vesicles.
Thus, many researchers believe that some molecules
crucial for sorting are localized at the TGN.

Signals and molecules for basolateral sorting. Several
sorting signals for basolateral membranes are known,
such as those containing tyrosine motif and those con-
taining dileucine motif (5). Adaptor proteins known as
AP-1B and AP-4 are known to bind these motifs and
to be involved in basolateral sorting (6, 7). In addition,
clathrin itself has recently been shown to be essential
for basolateral sorting (8). Protein kinase D2 (PKD2),
a kinase that binds diacylglycerol (DAG), has also
been shown to be necessary for fission of basolateral
vesicles (9).
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Fig. 1 Molecules involved in polarized transport. Molecules involved
in apical transport are depicted in red and those involved in baso-
lateral transport are depicted in blue.

Signals and molecules for apical sorting. Apical
signals: GPI signals and glycosylation (N- and
O-glycosylation) are known to be important in apical
sorting (/0). However, even proteins with these signals
are transported basolaterally in the presence of baso-
lateral signals within their cytoplasmic domains. From
these findings and the observation that some amino
acids in the transmembrane region are essential for
apical transport, ‘raft hypothesis’ is now prevailing
(11). ‘Rafts’ are also known as glycolipid and choles-
terol containing membrane domains where GPI-
anchor proteins and glycosylated proteins are
accumulated. However, there are many apical proteins
which do not associate with rafts. Thus, apical trans-
port is also mediated by several mechanisms. Jacob’s
group has been investigating this point for several
years (12, 13). They labelled sucrose—isomaltase (SI)
and lactase—phlorizin hydrolase (LPH) with YFP
(yellow fluorescent protein) and CFP (cyan fluorescent
protein), respectively, and showed that the vesicles
they reside in are transported differently. They purified
these wvesicles and showed that the vesicles
containing SI also have annexin2, and that those
with LPH have galectin3. They further analysed
galectin3 knockout mice and found that LPH, which
is normally localized at the apical plasma membrane,
is diffusely distributed in the small intestinal cells
(14). From these findings, formation and sorting
of wvesicles carrying raft-independent cargos are
mediated by crosslinking of luminal sugars with
galectin3.

Previously, proteolipids, such as MAL and MAL2,
were candidates of sorting proteins of apical vesicles
(15). However, recent study showed that MAL knock-
out mice failed to show overt neuronal and epithelial
polarity defects (/6). Thus, MAL deficiency is not suf-
ficient to exert abnormality in apical transport. Other
groups reported that FAPP2, a PH domain containing
protein, which binds Arf and PIP2, is involved in
apical sorting (/7).
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Fig. 2 Phenotype of Rab8a knockout mouse. Apical marker DPPIV
(white staining) is localized on the plasma membrane in wild-type
mouse (upper panel), whereas in Rab8a knockout mouse, most of
DPPIV is localized in large granular structures (lower panel).

Transport
Motor proteins are absolutely required for transport
from the TGN to the plasma membranes. It is believed
that for the long distance transport, microtubule-
mediated transport by kinesins and dyneins are neces-
sary and for the short distance transport, actin-
mediated transport by myosins is necessary (/8).
Thus, to understand the transport in polarized
cells, information on polarity of microtubules is abso-
lutely required. Minus and plus ends of microtubules
are directed to apical and basolateral plasma mem-
branes, respectively. Thus, apical transport has long
been thought to be mediated through minus-end
directed motor proteins, such as cytoplasmic dynein
(1/9) and KIFC3 (20). However, recent finding indi-
cates that the directions of microtubules are mixed
below the apical plasma membrane. Furthermore,
KIF5B, one of conventional kinesins, carries ves-
icles containing p75NTR, a raft-independent cargo
molecule (27). From these findings, distinct motor
proteins are used to convey distinct cargo proteins.
In addition, Astanina and Jacob have shown that
KIF5C is involved in apical transport in MDCK
cells (22).
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Fig. 3 Routes of ‘apical’, ‘basolateral’ and ‘axonal’ proteins in the
neuron. (A) ‘Basolateral’ proteins (Tf-R, pIgR, LDL-R) are trans-
ported to the dendrites directly and are exposed on the dendrite
membranes. (B) ‘Apical’ proteins (p75™'R, HA, CD8a) are trans-
ported both to axons and dendrites and exposed on axonal and
dendritic plasma membranes. (C) One ‘axonal’ protein (NgCAM) is
transported both to axons and dendrites, but is exposed only on the
axonal plasma membranes. (D) The other ‘axonal’ protein (VAMP2)
is transported also both axons and dendrites, but is selectively
endocytosed only in dendrites.

In case of neurons, plus ends of microtubules are
localized at the distal ends of axons. This is in sharp
contrast to the epithelial cells where minus ends of
microtubules are localized near the apical plasma
membranes. Thus, transport from the cell body to
the synaptic terminal is mediated by kinesin family
motor proteins and the transport in the opposite

Mechanism of cell polarity

direction is mediated by cytoplasmic dynein. What
makes things more complex is that in dendrites, the
microtubules are of mixed polarity, with some plus
ends pointing outward and some pointing inward (23).

Tethering

Basolateral tethering. Until recently, a basolateral
tethering factor on the transport vesicles has been
thought to be Rab8 and tethering factors on the baso-
lateral plasma membranes has been thought to be com-
ponents of exocyst (24). However, our group revealed
that Rab8 is essential for localization of apical proteins
in the small intestine (25) (Fig. 2). Since other groups
have also shown that Rab8 is necessary for the gener-
ation of cilia which protrudes from the apical plasma
membranes (26—28), it is becoming popular to think
that Rab8 is necessary for apical transport, although
the exact role of Rab8 (for example, whether it is
required for sorting or tethering) is unclear.

Apical tethering. Annexinl3b was shown to be neces-
sary for apical tethering (29), but further molecular
details have not been shown.

Fusion

For fusion of vesicles to the plasma membranes, it is
widely accepted that SNAP (soluble NSF attachment
protein) receptors (SNARE) proteins and SNARE-
binding proteins are thought to be important. For
apical transport, syntaxin3 and SNAP23 are
t-SNAREs and VAMP7 (TI-VAMP) is a v-SNARE.
For basolateral transport, syntaxin4 is a t-SNARE and
VAMP3 is a v-SNARE (30). In case of VAMP7, a
dominant negative form suppressed axonal elongation
(37). Knockdown of syntaxin3 also inhibited axonal
elongation (32).

Direct or indirect pathway?

It is known that there are at least two steps to the final
destinations (e.g. apical membrane). One is direct path-
way, the other is indirect pathway.

The former is the pathway where the cargo is trans-
ported directly to the final destination. The latter is the
one where the cargo is transported to the different sites
and then endocytosed vesicles are redirected to the
final destination. The rate of pathways a cell uses is
different between the species of the cell. For example,
the tubular epithelial cells in the kidney are believed to
use mainly the direct pathway, whereas hepatocytes
are believed to use the indirect pathway. Intestinal epi-
thelial cells are believed to use both (33).

Differences in polarized transport between
epithelial cells and neurons

Epithelial cells and neurons are two typical types of
polarized cells. It was believed that the axons and den-
drites correspond to the apical and basolateral plasma
membranes, respectively. However, current investiga-
tions showed that this model is an oversimplified one.
In case of neurons, Banker’s group has shown as fol-
lows; (i) basolateral proteins (e.g. Tf-R) are localized
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Fig. 4 One of the future directions in the research of cell polarity using multiple organisms. After finding out novel cell polarity-related genes using
simple organisms, such as Caenorhabditis elegans, we will be able to knock out the genes in mice and/or track the vesicular transport in live worm
or mouse cells (from wild-type or knockout animals) under light microscope.

on dendrites, but apical proteins (e.g. p7SNTR) are
localized both on axons and dendrites; (i) dendritic
membrane proteins are transported directly to the
plasma membranes; (iii) axonal proteins (VAMP2
and NgCAM) go to the axons and dendrites:
NgCAM is exposed on the plasma membrane only in
the axons, while VAMP?2 is exposed on the plasma
membrane both in the axons and dendrites, but is
selectively endocytosed only in the dendrites (34)
(Fig. 3). However, different groups have reported
other routes of transport (35).

In addition, it is doubtful that epithelial cells and
neurons use the similar mechanism or proteins in
their polarized transport because many proteins
involved in polarized transport show different pattern
of tissue expression. Thus, it is feasible to think that
some proteins are important in a certain type of epi-
thelial or neuronal tissues. For example, our Rab8
knockout mice showed polarity defects mainly in the
epithelial cells of the small intestine (25), showing the
limitation of using cell culture as a general model
system for polarity research.

Interaction between cell-cell contact and polarized
transport at the molecular level

Until recently, it is generally imagined that first
cell—cell contact makes the apical and basolateral re-
gions and then, apical and basolateral proteins are
transported by polarized transport. However, accumu-
lating evidence indicates that differentiation of the
apical and basolateral regions can take place without
cell—cell contact.

One of the first and striking observations is that if a
molecule, called Strad, is overexpressed, cells without
cell—cell contact are able to have apical microvilli (36).
Secondly, epithelial cells without ZO-1 and ZO-2 do
not form tight junction, but still they have the apical
and basolateral regions (37). These results showed that
the polarized transport is essential for the generation
and maintenance of cell polarity as well as cell—cell
contact. Thus, in normal polarization process, it is
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natural to think about close interaction between
cell—cell contact and polarized transport.

However, very few observations have been reported
about interaction between cell—cell contact and polar-
ized transport so far. One of them is the observation in
Dlg5 knockout mice (38). These knockout mice
showed cystic kidney from polarity defect of renal
tubules. Normally, vesicles carrying cadherins and
catenins use vesicular Dlg5 to fuse with the plasma
membranes through the interaction between DIg5
and syntaxin4 on the basolateral plasma membrane.
In the renal tubules of knockout mice, this interaction
was perturbed because of lack of Dlg5, resulted in
transport defects of cadherins and catenins to the baso-
lateral plasma membrane.

Future directions

In this review, I introduced molecules involved in
polarized transport whose roles have mainly been re-
vealed in cell culture system, particularly MDCK cells.
However, their roles in tissues and functions in organ-
isms have not been clarified. To elucidate these, we are
now making knockout mice of many of these mol-
ecules. As a first report, we showed that Rab8 is essen-
tial for localization of apical proteins in the epithelial
cells of small intestine, which is in sharp contrast to
previous reports (25). In addition to this, we speculate
that much more molecules should be involved in the
generation and maintenance of cell polarity. Thus,
finding out of novel molecules and investigating the
roles of these molecules should be the next task to
fully understand the molecular mechanism of cell po-
larity (Fig. 4). As cell polarity is essential for building
the tissue and its function, the defects of polarity
should lead to a number of diseases, such as cancer
and metabolic syndrome. Since further investigation
should lead to treatment of these diseases, the necessity
of cell polarity research is still increasing.
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